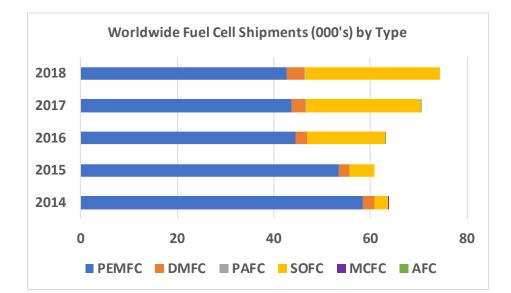



Presented at NEDC 2019 Partner Meeting June 11, 2019

**Presented by Gregory Wilcox** 




# **Worldwide Fuel Cell Market Status**





Source: The Fuel Cell Industry Review, 2018, E4Tech





# **Fuel Cell Benefits for Port Applications**

- 2-3 times more energy efficient than combustion power sources
- Zero vehicle/equipment emissions
  - Criteria pollutants
  - Air toxic pollutants
  - GHG Emissions
- Potential lifecycle (WTW) emission reductions compared to traditional power sources
- Lower noise emissions
- Potentially lower maintenance costs



# Remaining Market Challenges for Fuel Cell in Port Applications

- High upfront capital costs
- High delivered hydrogen fuel price
- Limited hydrogen fuel supply infrastructure in some regions
- Pre-commercial system development status for many applications
- End use market familiarity/understanding



# **Market Status: Forklifts**

- Pre-commercial/commercial: Over 20,000 in service, mostly lighter forklift classes
- Platform Approaches: Battery box fuel cell replacement in lighter classes; integrated fuel cell hybrid systems in heavier classes.
- Manufacturers: Raymond, Hyster-Yale, Toyota, Taylor, Kalmar
- In lighter applications, direct lifecycle benefits relative to battery-electric options
  - Lower operational costs
  - Increased productivity
  - Lower warehouse footprint



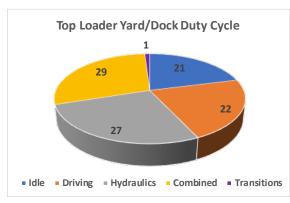


# **Market Status: Drayage Trucks**

- Pre-commercial: HyARC reports over 30 fuel cellpowered heavy-duty drayage trucks deployed or soon to be deployed over the next several years. Key upcoming demonstrations in California.
- Fuel cell dominant and range extender hybrid platforms
- Manufacturers: Toyota/Kenworth, Transpower, U.S.
   Fuel Cell/ U.S. Hybrid/International, Ballard/BAE
   Systems/Kenworth,
   Hydrogenics/Transpower/Navistar
- Limited experience indicates comparable performance and much higher fuel efficiencies than baseline diesel.






# **Market Status: Yard Tractors/Container Handlers**

#### **Yard Tractors**

- Pre-commercial: Multiple vehicles in active or planned port demonstrations.
- Fuel cell dominant and range extender hybrid platforms
- Example system: 85 kW PEMFC, 20 kg H2 (350 bar), 31.8 kWh of li-ion battery,
- Manufacturers: Ballard Power Systems/BAE Systems/Capacity and Loop Energy/Transpower

#### **Container Handlers**

- Pre-commercial: Upcoming demonstration at POLA
- Manufacturer: Nuvera/Hyster-Yale Group
- Research platform: 90 kW Nuvera PEMFC, 20 kg H2 storage (350 bar), 200 kWh lithium ion battery pack
- Wireless battery charging 3 5 min per charge
- Lower energy costs
- Reduced maintenance
- Higher productivity





# **Market Status: Marine Vessel**

#### **Domestic**

- San Francisco Passenger Ferry: Projected completion in late 2019
  - Hydrogenics, BAE Systems, Incat Crowther, Bay Ship & Yacht Company, Red & White Fleet, Port of San Francisco, and Sandia National Laboratories.
  - 70-foot, 84-passenger catamaran, dual BAE Systems 300 kW electric motors, 360
     kW Hydrogenics PEMFC stack and 100 kWh of Li-ion battery packs.
  - Onboard 264 kg of compressed hydrogen storage (250 bar)



#### **International**

| Euro Project        | Vessel Type            | System                | Fuel Cell Application                          | Timeframe             | Fuel     |
|---------------------|------------------------|-----------------------|------------------------------------------------|-----------------------|----------|
| E4Ships - RiverCell | Inland River<br>Cruise | 250kW HTPEMFC         | Baseload Hybrid Propulsion and Auxiliary Power | Phase 2:<br>2017-2022 | Methanol |
| E4Ships - Elektra   | Inland<br>Push/towboat | Two 100 kW<br>HTPEMFC | Baseload Hybrid Propulsion and Auxiliary Power | Phase 2:<br>2017-2024 | Hydrogen |
| FLAGSHIPS - CFT     | Inland<br>Push/towboat | 400 kW PEMFC          | Hybrid Propulsion and Power                    | 2021                  | Hydrogen |



# **Market Status: Stationary Power**

#### **Stationary Power Applications**

| Cost Components    | System 1 | System 2 | System 3    | System 4    | System 5    |
|--------------------|----------|----------|-------------|-------------|-------------|
| Fuel Cell Type     | PEMFC    | SOFC     | MCFC        | PAFC        | MCFC        |
| Capacity (kW)      | 0.7      | 1.5      | 300         | 400         | 1,400       |
| Total Cost (\$)    | \$15,400 | \$34,500 | \$3,000,000 | \$2,800,000 | \$6,400,000 |
| Cost per kW        | \$22,000 | \$23,000 | \$10,000    | \$7,000     | \$4,571     |
| O&M Costs (\$/MWh) | \$60     | \$55     | \$45        | \$36        | \$40        |

Source:
Assessment of
Fuel Cell
Technologies
to Address
Power
Requirements
at the Port of
Long Beach,
UCIrvine, 2016)

### **Combined Heat & Power (CHP) Applications**

| Parameter                          | <b>Fuel Cell Systems</b> | <b>Reciprocating Engine</b> | Steam Turbine | Gas Turbine   | Microturbine  |
|------------------------------------|--------------------------|-----------------------------|---------------|---------------|---------------|
| Electric Eff (%)                   | 30 - 65                  | 27 - 41                     | 5 - 40        | 24 - 36       | 22 - 28       |
| Net CHP Eff (%)                    | 55 - 90                  | 77 - 80                     | ~80           | 66 - 71       | 63 - 70       |
| Typical Capacity (MW)              | 0.2 - 2.8                | 0.005 - 10                  | 0.5 - 100     | 0.5 - 300     | 0.08 -1       |
| Power Density (kW/m <sup>3</sup> ) | 5 - 20                   | 35 - 50                     | > 100         | 20 - 500      | 5 - 70        |
| CHP Installed Cost (\$/kW)         | \$5000 - 6000            | \$1500 - 2900               | \$670 – 1100  | \$1200 - 3300 | \$2500 – 4300 |
| Availability (%)                   | > 95                     | 96 - 98                     | 72 – 99       | 93 - 96       | 98 - 99       |
| Start-up Time                      | mins - days              | secs - mins                 | hr - day      | mins - hr     | secs - min    |



# **Contact Information**

**Greg Wilcox** 

**Eastern Research Group** 

(703) 841-0354

(339) 223-1223

Greg.Wilcox@erg.com





# Maritime Hydrogen Port Cluster

**Charles Myers** 

July 11, 2019

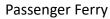
### DOE H2@Scale Program



 $MAH_2$ 

### Port Cluster Concept








**Light Duty Vehicles** 

Commuter Rail







Cold Ironing Barge

Offshore Workboat

| Dieser consumption by osc |             |              |                   |  |  |  |  |
|---------------------------|-------------|--------------|-------------------|--|--|--|--|
| Fuel Use<br>Category      | Subcategory | CO2e<br>Tons | Gallons<br>Diesel |  |  |  |  |
| OGV                       | Hoteling    | 2,796        | 249,643           |  |  |  |  |
| OGV                       | Maneuvering | 65           | 5,804             |  |  |  |  |
| OGV                       | Subtotal    | 2,861        | 255,446           |  |  |  |  |
|                           |             |              |                   |  |  |  |  |
| CHE                       | Subtotal    | 12           | 1,071             |  |  |  |  |
|                           |             |              |                   |  |  |  |  |
| Locomotives               | Subtotal    | 1,166        | 104,107           |  |  |  |  |
|                           |             |              |                   |  |  |  |  |
| HDV                       | On-Terminal | 28           | 2,500             |  |  |  |  |
| HDV                       | Subtotal    | 28           | 2,500             |  |  |  |  |
|                           |             |              |                   |  |  |  |  |
| Port                      | Total       | 4,067        | 400,276           |  |  |  |  |

### Port Terminal Container Handling Fuel Cell Options

Hyster Yale Container Handler




Hyster Yale Reach Stacker



Kalmar Fork Lift





# Port Terminal Equipment Hydrogen Use



RTG Crane 45 kg/day



Container Handler Loaded 56 kg/ day - Empty 25 kg/day



Reach Stacker 33 kg/day

|                         |               | Port of NY / NY |              | Port of Long Beach |       |              | Port of Los Angeles |       |              |           |
|-------------------------|---------------|-----------------|--------------|--------------------|-------|--------------|---------------------|-------|--------------|-----------|
|                         | Average H2 Kg | # of            | H2 Kg        | H2 Kg              | # of  | H2 Kg        | H2 Kg               | # of  | H2 Kg        | H2 Kg     |
|                         | per Day/Unit  | Units           | per Day/Unit | Class/Day          | Units | per Day/Unit | Class/Day           | Units | per Day/Unit | Class/Day |
| RTG Crane               | 51            | 53              | 57           | 2996               | 60    | 52           | 3126                | 96    | 46           | 4369      |
| Forklift                | 5             | 200             | 5            | 1045               | 104   | 5            | 482                 | 117   | 5            | 632       |
| Container Hdlr Empty    | 22            | 68              | 30           | 2030               | 13    | 12           | 156                 | 21    | 25           | 632       |
| Container Hdlr Loaded   | 59            | 39              | 45           | 1738               | 195   | 63           | 12263               | 217   | 70           | 15258     |
| Reach Stacker           | 33            | 52              | 33           | 1710               |       |              |                     |       |              |           |
| Straddle Carrier        | 46            | 308             | 46           | 14143              |       |              |                     |       |              |           |
| Yard (Terminal) Tractor | 23            | 471             | 16           | 7511               | 564   | 28           | 15563               | 845   | 26           | 22058     |
|                         |               |                 | Total        | 29463              | •     | Total        | 31591               |       | Total        | 59250     |



Straddle Carrier 46 kg/day



Yard (Terminal) Tractor 21 kg/day

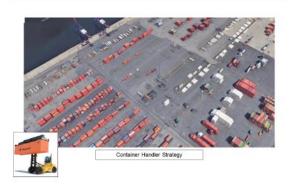


Forklift 5 kg/day

### NY / NJ Port Terminal Equipment Fuel Use


Port operator equipment strategy drives fuel consumption and equipment numbers. APM on the surface appears to be the most efficient. Maher, the #2 volume operator, uses straddle carriers as does Ports of America. Staten Island and Red Hook rely on container handlers.

|                         | APM Terminals |         | minals Maher Terminals |         | Ports of America |         | Port of NY Staten |         | Red Hook |         |
|-------------------------|---------------|---------|------------------------|---------|------------------|---------|-------------------|---------|----------|---------|
|                         | # of          | H2 Kg   | # of                   | H2 Kg   | # of             | H2 Kg   | # of              | H2 Kg   | # of     | H2 Kg   |
|                         | Units         | per Day | Units                  | per Day | Units            | per Day | Units             | per Day | Units    | per Day |
| RTG Crane               | 23            | 1300    | 0                      | 0       | 0                | 0       | 2                 | 113     | 0        | 0       |
| Forklift                |               | 0       | 0                      | 0       | 0                | 0       | 0                 | 0       | 0        | 0       |
| Container Hdlr Empty    | 25            | 746     | 18                     | 537     | 7                | 209     | 18                | 537     | 1        | 30      |
| Container Hdlr Loaded   | 12            | 535     | 13                     | 579     | 6                | 267     | 8                 | 357     | 3        | 134     |
| Reach Stacker           |               | 0       | 0                      | 0       | 3                | 99      | 2                 | 66      | 12       | 395     |
| Straddle Carrier        | 0             | 0       | 210                    | 9643    | 98               | 4500    | 0                 | 0       | 0        | 0       |
| Yard (Terminal) Tractor | 118           | 1882    | 41                     | 654     | 17               | 271     | 49                | 781     | 54       | 861     |
| Fuel Truck              | 3             | 0       | 3                      | 0       | 3                | 0       | 1                 | 0       | 0        | 0       |
| Daily Hydrogen Use (kg) |               | 4463    |                        | 11414   |                  | 5346    |                   | 1854    |          | 1419    |


APM Terminals, Elizabeth, NJ (Bunkering A Container Ship At Berth)



Maher Terminals, Elizabeth, NJ



Port of New York Container Terminal Staten Island



Draft - Subject To Review

### Port of Boston Terminal & Intermodal Fuel Use

Port operator equipment strategy drives fuel consumption and equipment numbers. Connelly Terminal uses Yard Tractors to move containers from Ship-to-Shore (STS) Cranes then uses Rubber Tired Gantry (RTG) Cranes to stack containers. Container handlers are used for reefer and empty container storage.

The ICI intermodal yard relies on container handlers while the CSX intermodal yard relies on RTG's. Container movement is done by the drayage truck as it moves containers in and out of the intermodal site.

|                         | Boston |         | ICI Tı | ransit  | CSX Wo | orcester |  |
|-------------------------|--------|---------|--------|---------|--------|----------|--|
|                         | # of   | H2 Kg   | # of   | H2 Kg   | # of   | H2 Kg    |  |
|                         | Units  | per Day | Units  | per Day | Units  | per Day  |  |
| RTG Crane               | 8      | 452     | 0      | 0       | 3      | 170      |  |
| Forklift                | 2      | 10      | 0      | 0       | 0      | 0        |  |
| Container Hdlr Empty    | 4      | 119     | 1      | 30      | 1      | 30       |  |
| Container Hdlr Loaded   | 2      | 89      | 1      | 45      | 0      | 0        |  |
| Reach Stacker           | 3      | 99      | 6      | 197     | 0      | 0        |  |
| Straddle Carrier        | 0      | 0       | 0      | 0       | 0      | 0        |  |
| Yard (Terminal) Tractor | 46     | 734     | 8      | 128     | 10     | 159      |  |
| Fuel Truck              | 0      | 0       | 0      | 0       | 0      | 0        |  |
| Daily Hydrogen Use (kg) |        | 1503    |        | 399     |        | 359      |  |

Port of Boston (Connelly Terminal)



ICI Transit Intermodal



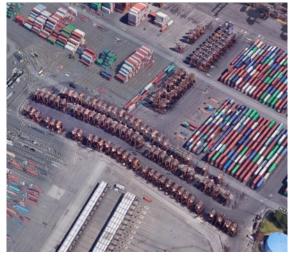
Draft - Subject To Review

**CSX** Worcester Intermodal



### Port Terminal Refueling Strategies

Equipment Ranked by Units


- 1) Yard Tractors
- 2) Straddle Carriers
- 3) Container Handlers (All)

Equipment when not in use is parked in rows in designated areas. Refueling is done from an oil tank truck that drives up and down the rows of parked equipment.

#### Notes:

- Port real estate exists for siting hydrogen facilities.
- Need a mobile refueling solution for high volume hydrogen dispensing.
- Need industry agreement on dispense & storage pressure.
- · Need mobile refueling protocol & safety Code development.





Diesel oil refueling trucks parked.



APM Terminals, Elizabeth, NJ (Yard Dog and Container Handler Parking)



Port of New York Container Terminal Staten Island (Equipment Parking)



# Fuel Cell Port Drayage Truck Program



Fuel Cell Electric Kenworth Model T680 developed in collaboration with Toyota refueling at Toyota's Port of Long Beach Terminal

#### Kenworth Model T680





Nikola Model One

| Port     | Drayage      |
|----------|--------------|
|          | Total H2/Day |
| POLA     | 438731       |
| POLB     | 335562       |
| New York | 98882        |

# Fuel Cell Maritime

GG Zero Marine Keel laid – November 2018



Brodrene Aa – MANCRAFT Norway



Reefer Power Young Brothers - Hawaii



Viking Lady
Onboard FC Hotel Load



# Summary

Port terminals, drayage trucks and maritime together create a hydrogen cluster.

Port profiling work is underway to identify use patterns, fuel needs and refueling strategies.

- Port terminal visits and discussions are underway
- Drayage truck manufacturers are sharing fuel and use profiles

Maritime vessel & ferry operators are looking at fuel cell technologies for both hotel load and main propulsion.

# Thank You

Charlie Myers (508) 380-1759 cmyers@massh2.org