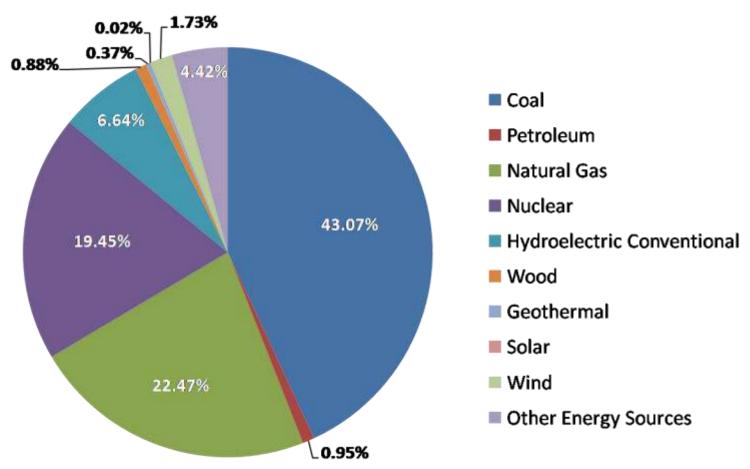


Marine & Hydrokinetic Technologies

Ryan Sun Chee Fore
Marine & Hydrokinetic
Technology Development
DOE Wind & Water Power Technology
Office

June 19th, 2013


Presentation Outline

- US Energy Demand
- MHK Resource
- MHK Technology Summary
- Manufacturing and Logistics
- Deployment
- Array Production
- Barriers
- High Profile DOE Projects
- Testing Infrastructure
- Questions

Electrical Power Generation by Source

Summary Annual Production (2011):

4105 TWh

14 Quads

469 GW Average Power Consumption

Source: EIA Annual Energy Report http://www.eia.gov/totalenergy/data/annual/

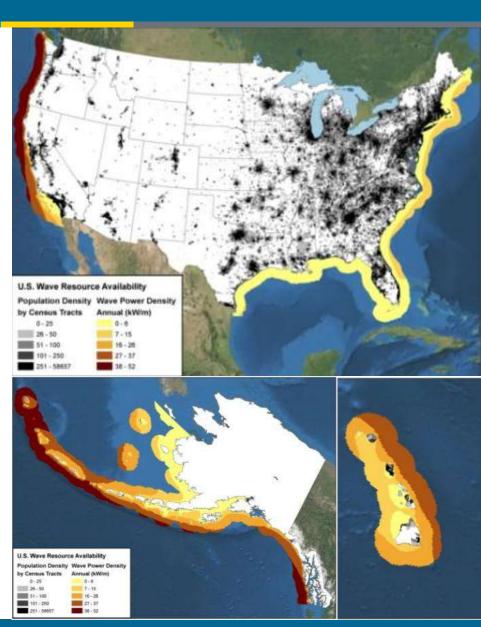
Marine and Hydrokinetics Total Energy by Resource

Marine and Hydrokinetics	Resource	Current US Resource Estimates (technically recoverable)		
Wave Energy (>90% in Alaska)	1,199 TWh/yr (~400 GW)	EPRI, 2011	19.5 GW	
Tidal Current Energy (>90% in Alaska)	250 TWh/yr (~50 GW)	Georgia Tech, 2011	1.5 GW	
Ocean Current Energy (>90% in Southeastern U.S.)	1-2 GW	DOE, 1980 Updated Georgia Tech assessment underway	Resource Assessment to be completed in FY 2013	
River Current Energy	101 TWh/yr (~20 GW)	EPRI, 2012	2 GW	
Ocean Thermal Energy (>90% in Pacific Islands)	4,642 TWh/yr (~600 GW)	Lockheed, 2012	N/A	
Total Domestic Energy Use ≈ 98 Quads (9,300 MHK-GWeq) Total Electrical Energy Use ≈ 13 Quads (1,200 MHK-GWeq)				
Program		ls (>500 GW) Quads (23 GW)		

Summary:

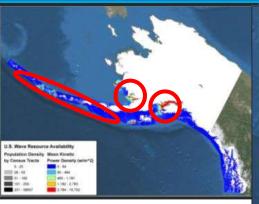
•	Total Domestic Energy Use ≈	98 Quads
•	Total Marine Energy Potential ≈	26 Quads
•	Total Electrical Energy Use ≈	14 Quads
•	Existing Marine Contribution ≈	0 Quads

Marine and Hydrokinetics Wave Resource Assessment

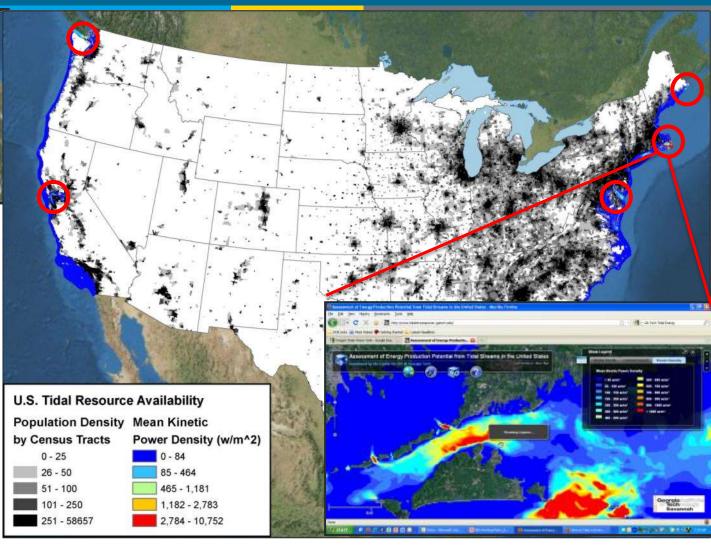


Wave Resources:

- Wave Energy is the dominant MHK resource available to the United States
- Magnitude of potential wave power ≈ 2,640TWh/yr:
 - > ≈ 300 GW (9 Quad/yr)

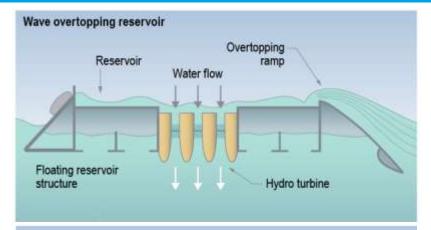

Total Wave Energy Resource Potential by Region				
West Coast	590	TWh/yr		
East Coast	240	TWh/yr		
Alaska	1,570	TWh/yr		
Hawaii	130	TWh/yr		
Gulf of Mexico	80	TWh/yr		
Puerto Rico	30	TWh/yr		
Total:	2,640	TWh/yr		

Source: "Mapping & Assessment of the United States Ocean Wave Energy Resource", EPRI 2011


Marine and Hydrokinetics Tidal Resource Assessment

CONUS Tidal Resources

- Magnitude of potential tidal power at 250TWhr/yr is significantly less than wave
- ~3 GW concentrated and exist in close proximity to major coastal load centers...
- However, over 90% of the overall resource (~47 GW) is located in Alaska.

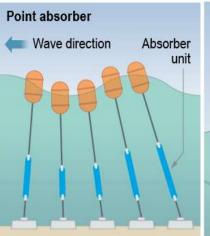


Source: Tidal Energy Database: http://www.tidalstreampower.gatech.edu/ (DOE Funded)

Marine and Hydrokinetics

Wave Technologies

Nave Surge Converter

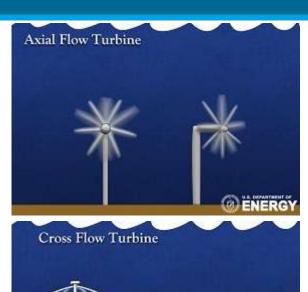

Paddle

Hydraulic pump
Hydraulic motor
Generator

Attenuator
Wind direction

Up-down movement

- Most are radically new technologies... devices and system concepts only at the first generation/pioneering stage of development
- Limited existing technical expertise and modeling platforms—what is applicable comes from O&G and maritime engineering
- LCOE of early-stage technologies at 40-60 cents per kWh

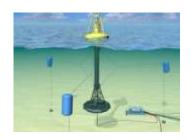


Marine and Hydrokinetics

Current (Tidal, Ocean and River) Technologies

- Current technologies are based upon validated wind turbine technologies adapted for marine environments:
 - ➤ Axial Flow → Horizontal Axis Turbine
 - ➤ Cross Flow → Vertical Axis Turbine
- The flow physics remain virtually unchanged with notable exceptions:
 - Water is 784 times denser than air
 - Preventing cavitation is a major blade design driver
 - > Rotor inflow debris hazards & blade fowling
- Reopened many of the technological/cost-effectiveness debates settled for wind:
 - Ducting
 - Horizontal vs. Vertical vs. Cross-flow orientation
- Wind expertise and extensive modeling capability can be adapted to an offshore, underwater environment
- Architectures are developing at an accelerated pace:
 - 2nd & 3rd generation design iterations
 - Full-scale deployment already occurring (ORPC, Verdant)
- LCOE at 15-25 cents per kWh (3x greater than wind)

Domestic MHK Industry



Wave Technology

- Capacity: 20 200 kW
- Deployment depths:50 70 m
- Draft of devices: 12.8 35 m
- Distance from shore: 1.15 6 nautical miles
- Moorings: single to 3-point mooring lines using gravity anchors or anchors buried in seafloor
- Weight: 30 417 metric tons
- Vessels required: tugs, barges, and land based cranes placed on barges

Current (Tidal, River and Ocean) Technology

- Capacity: 17.5 150 kW
- Deployment Depth: 9 26 m
- Distance below surface: 1 9.75 m
- Distance from shore: 17 610 m
- Moorings: 1 -10 pilings per device
- Weight: 4.7 79 metric tons
- Vessels required: tugs, barges, and land based cranes placed on barges

Wave Device Examples

Point Absorbers

OPT PowerBuoy

- Can be either floating or submerged
- Stationary portion moored to bottom
- The device moves up and down with the waves to generate electricity
- The relative motion is used to drive a generator

Surge

Aquamarine Power Oyster

- Deployed on the seabed
- The surging motion of waves underwater moves a flap back and forth like an inverted pendulum
- The motion of the flap pump high pressure fluid to drive a generator

Oscillating Water Column (OWC)

Ocean Energy Limited OWC

- The device is partially submerged
- Waves cause the water level in the column to rise and fall
- The changing air pressure spins a turbine which drives a generator

Wave Device Examples

Attenuator

Pelamis WEC

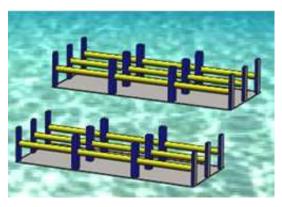
- Floats on the surface of the water
- The motion of the waves cause the attenuator to move
- The relative motion of the components of the device causes pressurized fluid to flow through the device
- Pressurized fluid is used to drive a turbine to generate electricity

Overtopping

Wave Dragon WEC

- Partially submerged structure
- A collector funnels waves over the top of the structure into a reservoir
- Water runs from the reservoir through a turbine and drives a generator
- The water then flows back out to sea

Current Device Examples


Axial Flow

Verdant Power axial flow turbine

- The motion of the water from the current/tide creates lift on the blades causing them to turn
- The rotation drives a generator which produces electricity
- The turbine can be either open or ducted

Reciprocating

Vortex Hydro reciprocating device

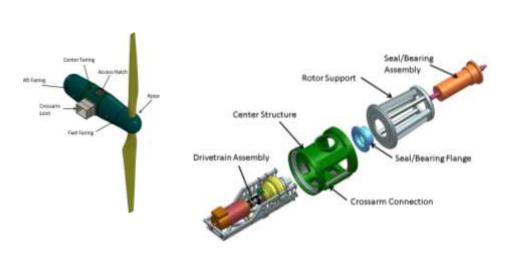
- Tide/current flows past the device
- This creates lift and drag forces which cause the device to oscillate
- The oscillation feeds into a power conversion system which produces energy

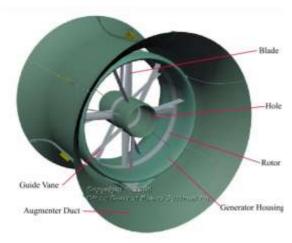
Cross Flow

ORPC cross-flow tidal turbine

- The motion of the water from the current/tide creates lift on the blades causing them to turn
- The rotation drives a generator which produces electricity
- The devices can either be vertical or horizontal axis turbines

Power Take-Off (WECs)


PTO is the combination of the drivetrain and generator that converts mechanical power into electrical power


- 4 Generally used PTOs
 - Air Turbine
 - Commonly used in OWC
 - Turbine converts reciprocating air flow to unidirectional torque that drives an electrical generator
 - Hydraulics
 - Commonly used in attenuators and surge devices
 - A hydraulic circuit which transfers absorbed power of wave to a hydraulic motor which drives an electrical generator
 - Mechanical Drive
 - Commonly used in point absorbers
 - Converts linear motion of the float to rotary motion of the generator along with speed conversion as necessary
 - Direct Drive
 - Commonly used in point absorbers
 - No mechanical conversion needed

Power Take-Off (CECs)

Moving water causes the turbine to rotate; the subsystem that converts that rotational motion to electricity is called the power take off (PTO)

- Turbine drives gears
- Gear output shaft drives generator
- Generator can be driven with or without gearbox

 In a rim generator the stator is on the outer rim of the duct with a shaft-less rotor

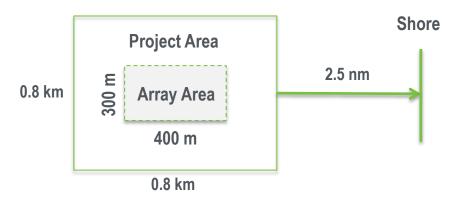
Assembly

- Devices are quite large and require large assembly areas
- Heavy-lift equipment is required to handle device structures and components
- Typical components that need to be fabricated, sourced and assembled are:
 - Main structural components (device dependent: nacelle, blades, tubes, "flaps", buoy, etc.)
 - Hydraulics and control systems
 - Subcomponents (gearbox, generator, bearings, etc.)
- Transportation can be difficult due to device size and weight

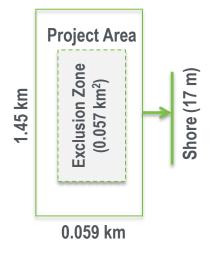
Local manufacturing has been identified as industry needs.

Deployment, Retrieval, and O&M

- Assembled device handling can be a challenge due to size and weight
- There is limited availability of vessels that can be used to deploy MHK devices (especially as devices increase in scale)
- Typical deployment vessels/equipment include: tugs, barges, and land based cranes placed on barges
- Specialized vessels and facilities may be required to support O&M of devices and arrays



Port facilities and vessels will be necessary for assembly, deployment, and O&M


Example WEC Array

- 1.5 MW (10, 150 kW units) array under development
- Depth of deployment is between 50 m and 69 m
- A single mooring can be leveraged by more than one device
- Transmission cable will be trenched in the seafloor
 - Subsea junction box to allow for a single cable back to shore

Example CEC Array

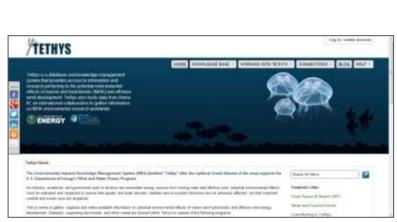
- 1.05 MW (30, 35 kW units) array
- Deployed on the seafloor with a piling at a depth between 9 and 25 m
- A 140-foot-wide and 21-footdeep navigation channel will be maintained adjacent to the project area

Production Manufacturing of Arrays

- Future arrays are expected to have around a 100 MW capacity and consist of 100 devices
- Construction of multiple large scale devices requires large assembly areas near deployment sites
 - Small shipyards could support MHK array scale production

How can this be scaled up to manufacture 100 MHK devices?

Barriers for Water Power

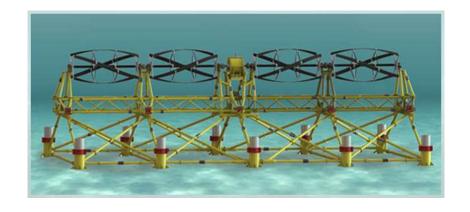


Immature Technology

- Lack of design tools, standards, and validation data are preventing disciplined approach to design.
- High technical and cost uncertainty due to lack of experience.
- Test facilities are needed where new technologies can be proven outside the commercial regulatory path.

Siting and Permitting

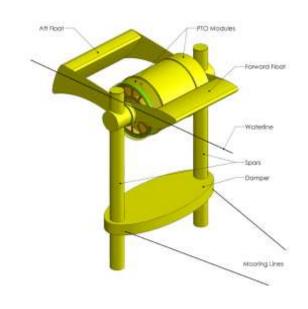
- Conventional hydro regulatory paradigm for single device
 MHK technology is hindering development.
- Deployment is limited to a handful of proof of concept devices.
- 2009 MHK promotion act in play for more stream-line adaptive management system.



- Ocean Renewable Power Company (ORPC)
 - First grid connected, commercial tidal power project
 - Bay of Fundy, Eastport, Maine
 - 80 kW, cross flow turbine
 - 78 metric tons
 - Dimensions
 - 30 m long, 4.3 m high and 5.8 m wide

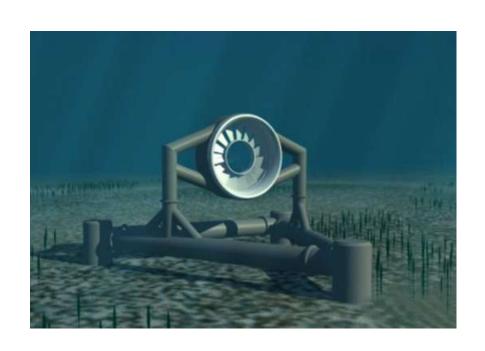
- Verdant Power Company
 - Planned current power array in East River, NY
 - FERC license for 30 devices rated at 35kW (1050kW total capacity)
 - Vertical axis turbine
 - 5 meter diameter turbine
 - 4.7 metric tons

- Northwest Energy Innovations (NWEI)
 - ½ scale WET-NZ point absorber
 - Planned deployment at US Navy's Wave Energy Test Site (WETS) in Hawaii
 - Tested off the coast of Oregon, using the Northwest National Marine Renewable Energy Center's Ocean Sentinel
 - 30 metric tons
 - Dimensions:
 - Hull height: 15.0 m
 - Hull width: 3.8 m
 - Float diameter: 2.4 m



- Columbia Power Technologies
 - StingRAY WEC
 - Earlier 1/7th scale prototype deployed for approximately in Puget Sound, WA
 - 418 metric tons
 - Dimensions
 - Length(fore to aft): 15.4 m
 - Beam(port to starboard): 12.5 m
 - Overall Height: 20.5 m
 - Draft: 18.75 m
 - Freeboard: 1.7 m

Testing Infrastructure



- Center for Ocean Renewable Energy (CORE) University of New Hampshire
 - Works with industry to define MHK testing requirements and collect environmental and resource data to support test site development
- NNMREC Wave and Tidal Test Facility
 - Completed permitting requirements for an open water WEC test site in Reedsport, OR
 - Demonstrated a new testing device (Ocean Sentinel) for WECs equipped with an array of measuring
 - Working to complete the design of a full scale, grid connected ocean energy test facility at NNMREC capable of accommodating commercial scale devices
- **PMEC**
 - Will be the first full scale, grid-connected test center in the U.S.
- SNMREC Ocean Current Test Facility
 - Working on installation of a non-grid-connected offshore test berth and deployment of an experimental ocean current-energy conversion research device.
- HINMREC Wave and Ocean Thermal Energy Conversion Test Facility
 - Working on build-out of the Navy's Wave Energy Test Site (WETS) for testing in water depths ranging from 30 m to 70 m

Questions?

Ryan Sun Chee Fore

Marine & Hydrokinetic
Technology Development
DOE Wind & Water Power Technology
Office

Contact Information:

Phone: 202-586-8245

Email: ryan.suncheefore@ee.doe.gov

Key MHK Resources

- Subscribe to Water Power Program News:
 http://www1.eere.energy.gov/water/financial opportunities.

 html
- Visit the OpenEI Water Gateway for DOE and other community news, data, and reports: http://en.openei.org/wiki/Gateway:Water Power
- Sign up for RSS feeds of MHK Technology Development
 Journal Publications at: http://mhktechpapers.wordpress.com
- View MHK Environmental Studies at: http://mhktechpapers.wordpress.com